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Abstract

Following Fisher (1935/71), it is widely believed that randomization“reli-

eves the experimenter from the anxiety of considering innumerable causes

by which the data may be disturbed.” In particular, it is said to control

for known and unknown nuisance factors that may challenge considera-

bly the validity of a result. Looking for quantitative advice, I studied a

number of straightforward, mathematically simple models. (Only one of

them is presented here.)

However, they all demonstrate that the optimism with respect to ran-

domization is wishful thinking rather than based on fact. In small to

medium-sized samples, random allocation of units to treat-

ments typically yields a considerable imbalance between the

groups, i.e., confounding due to randomization is the rule rather than

the exception. For this, and further reasons, classical experimentation

based on sound background theory and the systematic construction of

comparable groups, seems to be preferable.

Savage’s Example

Our conclusion, based on an explicit quantitative analysis, coincides with

the qualitative argument given by Savage (1962):

Suppose we had, say, thirty fur-bearing animals of which some were

junior and some senior, some black and some brown, some fat and

some thin, some of one variety and some of another, some born wild

and some in captivity, some sluggish and some energetic, and some

long-haired and some short-haired.

It might be hard to base a convincing assay of a pelt-conditioning

vitamin on an experiment with these animals, for every subset of

fifteen might well contain nearly all of the animals from one side or

another of one of the important dichotomies [. . .]

Thus contrary to what I think I was taught, and cer-

tainly used to believe, it does not seem possible to ba-

se a meaningful experiment on a small heterogenous

group.

The Logic of the Experiment

If one compares two groups of subjects (Treatment T versus Control C,

say) and observes a substantial difference in the end (e.g. ȲT > ȲC), that

difference must be due to the experimental manipulation - IF the groups

were equivalent at the very beginning of the experiment:

Start of Experiment T = C T 6= C

Intervention Yes No Yes No

End of Experiment

(Observed Effect) ȲT > ȲC ȲT > ȲC

Conclusion Intervention Intervention OR prior difference

caused the effect caused the effect

Worrall (2007): “It is entirely possible that any particular rando-

mization may have produced a division into experimental and

control groups that is unbalanced with respect to ‘unknown’ factor

X [. . .]”
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Random Confounding (Binary Model)

Suppose there is a nuisance factor X taking the value 1 if present and 0

if absent. One may think of X as a genetic aberration, a psychological

disposition or a social habit. Assume that the factor occurs with proba-

bility p in a certain person (independent of anything else). Given this,

2n persons are randomized into two groups of equal size by a chance

mechanism independent of X .

Let S1 and S2 count the number of persons with the trait in the first

and the second group respectively. S1 and S2 are independent random

variables, each having a binomial distribution with parameters n and p.

A natural way to measure the extent of imbalance between the groups is

D = S1 − S2. Obviously, ED = 0 and

σ2(D) = σ2(S1) + σ2(−S2) = 2σ2(S1) = 2np(1− p).

Iff D = 0, the two groups are perfectly balanced with respect to factor

X . In the worst case |D| = n, that is, in one group all units possess the

characteristic, whereas it is completely absent in the other. For fixed n,

let the two groups be comparable if |D| ≤ n/i with some i ∈ {1, . . . , n}.
Iff i = 1, the groups will always be considered comparable. However, the

larger i, the smaller the number of cases we classify as comparable. In

general, n/i defines a proportion of the range of |D| that seems to be

acceptable. Since n/i is a positive number, and S1 = S2⇔ |D| = 0, the

set of comparable groups is never empty.

Given some constant i(< n), the value n/i grows at a linear rate in n,

whereas σ(D) =
√

2np(1− p) grows much more slowly. Due to conti-

nuity, there is a single point n(i, k), where the line intersects with k times

the standard deviation of D. Beyond this point, i.e. for all n ≥ n(i, k),

at least as many realizations of |D| will be within the acceptable range

[0, n/i]. Straightforward algebra gives,

np(i, k) = 2p(1− p)i2k2.

A typical choice could be i = 10 and k = 3, which specifies the requi-

rement that most samples be located within a rather tight acceptable

range. Relaxing the criterion of comparability (i.e. a smaller value of i)

decreases the number of subjects necessary. The same happens if one

decreases the number of standard deviations k. Depending on p, the fol-

lowing numbers of subjects are needed per group (and twice this number

altogether):

p i k np(i, k) i k np(i, k) i k np(i, k)

1/2 10 3 450 5 3 113 10 2 200

1/5 10 3 288 5 3 72 10 2 128

1/10 10 3 162 5 3 41 10 2 72

1/100 10 3 18 5 3 5 10 2 8

This shows that randomization works, if the number of sub-

jects ranges in the hundreds or if the probability p is rather low.

(By symmetry, the same conclusion holds if p is close to one.) Otherwise

there is hardly any guarantee that the two groups will be comparable.

Rather, they will differ considerably due to random fluctuations.

Probability (T and C comparable)

The distribution of D is well known, thus it is possible to compute the

probability q = q(i, n, p) that two groups, constructed by randomization,

will be comparable. If i = 5, i.e., if one fifth of the range of |D| is judged

to be comparable, we obtain:

p n q(i, n, p)

1/2 5 0.66

1/2 10 0.74

1/2 25 0.88

1/2 50 0.96

p n q(i, n, p)

1/10 5 0.898

1/10 10 0.94

1/10 25 0.98999

1/10 50 0.999

p n q(i, n, p)

1/100 5 0.998

1/100 10 0.9997

1/100 25 0.999999

1/100 50 1

Thus, it is rather difficult to control a factor that has a probabi-

lity of about 1/2 in the population. However, even if the probability of

occurrence is only about 1/10, one needs more than 25 people per group

to have reasonable confidence that this nuisance factor has not produced

a substantial imbalance.
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Several factors

The situation becomes worse if one takes more than one nuisance factor

into account. Given m independent binary factors, each of them occur-

ring with probability p, the probability that the groups will be balanced

with respect to all nuisance variables is qm. Numerically, the above results

yield:

p n q q2 q5 q10

1/2 5 0.66 0.43 0.12 0.015

1/2 10 0.74 0.54 0.217 0.047

1/2 25 0.88 0.78 0.53 0.28

1/2 50 0.96 0.93 0.84 0.699

p n q q2 q5 q10

1/10 5 0.898 0.807 0.58 0.34

1/10 10 0.94 0.88 0.74 0.54

1/10 25 0.98999 0.98 0.95 0.90

1/10 50 0.999 0.9989 0.997 0.995

Accordingly, given m independent binary factors, each occurring with

probability pj (and corresponding qj = q(i, n, pj)), the probabilities clo-

sest to 1/2 will dominate 1− q1 · · · qm which is the probability that the

two groups are not comparable due to an imbalance in at least one va-

riable. In a typical study with 2n = 100 persons, for example, it does

not matter if there are one, two, five or even ten factors, if each of them

occurs with probability of 1/100. However, if some of the factors are

rather common (e.g. 1/5 < pj < 4/5), this changes considerably. In

a smaller study with fewer than 2n = 50 participants, a few such fac-

tors suffice to increase the probability that the groups constructed by

randomization won’t be comparable to 50%. With a few units per

group, one can be reasonably sure that some undetected,

but rather common, nuisance factor(s) will make the groups

non-comparable which is the crux of Savage’s example.

Interactions

The situation deteriorates considerably if there are interactions between

the variables that may yield convincing alternative explanations for an

observed effect. It is possible that all factors considered in isolation are

reasonably balanced (which is often checked in practice), but that a cer-

tain combination of them affects the observed treatment effect. Given

m factors, there are m(m− 1)/2 possible interactions between just two

of the factors, and
(m
ν

)
possible interactions between ν of them. Thus,

there is a high probability that some considerable imbalan-

ce occurs in at least one of these numerous interactions,

in small groups in particular. Detected or undetected, such imbalances

provide excellent alternative explanations of an observed effect.

Conclusions
Deliberately, the above model has been kept as simple as possible. There-

fore, its results are straightforward and they agree with other natural mo-

dels: If n is small, it is almost impossible to control for a trait that occurs

frequently at the individual level or for a larger number of confounders

via randomization. It is of paramount importance to understand that

random fluctuations lead to considerable differences bet-

ween small or medium-sized groups, making them very often

non-comparable, thus undermining the basic logic of expe-

rimentation. That is, ‘blind’ randomization does not create equivalent

groups, but rather provokes imbalances and thus artifacts: Even in lar-

ger samples one needs considerable luck to succeed in creating equivalent

groups (p close to 0 or 1, a small number of nuisance factors m or a

favourable dependence structure that balances all factors, including their

relevant interactions, if only some crucial factors are to be balanced by

chance).

Therefore, it seems much more advisable to use background knowledge in

order to minimize the difference between groups with respect to known

factors or specific threats to experimental validity. At the end of such a

conscious construction process, randomization finds its proper place. On-

ly if no reliable context information exists, is unrestricted randomization

the method of choice. It must be clear, however, that it is a weak guard

against confounding, yet the only one available in such inconvenient si-

tuations.

In a nutshell, the above analysis strongly recommends tradi-

tional experimentation, thoroughly selecting, balancing and

controlling factors and subjects with respect to known rele-

vant variables, thereby using broader context information. For more

details see Saint-Mont (2015).
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